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The attitude control problem of earth orbiting platforms is considered. A model reference
adaptive control law has been devcloped that stably maintains spacecraft attitude at the
torque equilibrium under the influence of large mass variations and external disturbances,
The result is demonstrated through simulation using the nonlinear dynamic model of the

Space Station Freedom.

1 Introduction

Future space missions envision the use of large earth orbiting platforms such as the space
station, various space telescopes, interferometers, and planet ary explorat ion spacecraft. Con-
sidering that vehicles of large size must be assembled in space, knowledge of their mass and
dynamic properties will involve significant uncertaintiecs. This results from the fact that
ground structural tests can only be performed on the isolated component and subsystcm
levels, and in the I-g environment. Consequently, onc should anticipate that in-flight dy-
namic behavior will deviate significantly from that predicted by anaytical models. System
parameter uncertainties combined with the effect of on orbit dynamic disturbances such as
scrod ynami ¢ and gravitational forces, torques generated by astronaut motion in manned
vehicles, and transportation of large mobile payloads, introduce significant complexity to
the attitude control and vibration suppression problem. Utilization of conventional control

techniques will no longer be adequate to ensure stability and meet performance requirements.




The adverse effect of environmental disturbances is particularly apparent in some of the pro-
posed space station configurations, where aerodynamic forces tend to destabilize the vehicle.
The attitude control and momentum management problem for this case has been addressed
in [1]- [2] under the assumption of well known vehicle dynamics. Stability, however, can-
not be guaranteed if thereisinsuflicient knowledge of mass properties, or substantial mass

variations, such as those induced by large payload mation.

For systems with significant model uncertaintics, one can address the control design problem
in two ways:. either perform periodical on-orbit parameter identification followed by a fixed
gain control design and tuning, or develop a direct adaptive scheme that will continuously
adjust cent roller gains to compensate for parameter un cert aintics and time-varying p] ant and
environmental effects to ensure stable and robust performance. The former method, that
includes indirect adaptive control, has been investigated in [3]- [4]. A potential disadvantage
of indirect methods is that they require persistent excitation condition which may not be
satisfied under nominal spacecraft motion. 1n contrast, the present paper consi ders the design
of a direct adaptive controller. This scheme is stable, does not require persistent ‘excitation,
and provides the capability to handle sudden or continuous changes in system dynamics,
such as those generated by payload motion, vehicle docking, changing configurate ion, and

parameter drift.

The following sections present the derivation of the control law. In Section 2, the nonlinear
attitude dynamics of the orbiting spacecraft are discussed and a linearized representation,
useful in control design, is derived. In Section 3, model reference adaptive control (M RAC)
theory is used to first derive a non adaptive model following control law and then extend it
to an adaptive algorithm, A stability proof is givenasan integral part of the derivation to
show robustness under the effect of large moment of inertia changes and of dcst abilizing aero-
dynamic forces. Section 4 gives an application of the algorithm to the ‘Phase I’ configuration]]
of the Space Station Freedom (SSY¥) shown in Figure 1.




2 Attitude Dynamics and Control

The control problem for space platforms such as the space station is concerned with both
attitude stabilization and suppression of flexible body vibrations. These two processes, how-
ever, occur at distinctly separated time-scam or frequency bands, thus allowing decoupling
of the rigid body from the flexible dynamics. The attitude control loop considered in this
paper constitutes an inner (slower) loop in the control system with an effective bandwidth
al least onc decade below the frequency of the first flexible mode. The resulting control sys-
tcm is adequate to handle the environmental disturbances that, typically, vary at the orbital
rate, The control law is generically developed using the linearized attitude dynamics of a
rigid spacecraft. Performance evaluation is then conducted via simulation with the nonlinear
dynamic model of the SSF.

This paper deals with the attitude control problem only, and assumes that the torque equilib-
riumangle (TEA) is known. A momentum management loop is currentl y under development

and will be integrated with the attitude control law presented here.

2.1 Assumptions and Definitions

The following analysis assumes a rigid spacecraft on a circular orbit. The attitude control
system will enforce a local vertical-local horizontal (ILVLH ) orientation of the vehicle. Two
coordin atc systems are of interest at present. The rotating orbital frame O(X,Y, 7) in the
I,VI,}] orientation with the +7 axis along the local vertical in the nadir direction, the 4+X
in the direction of flight, and the +Y axis normal to the orbital plane defined by the vector

Z x X. Then the orbital rate vector in @ coordinates is

0= [0 — Wo 0]7 (2’1)

where wy is the orbital rate. A body fixed coordinate system B(z,y, z) is defined to nominally




coincide with O.Perturbations of f? relative to O define the spacecraft attitude expressed in
terms Of the three attitude angles 0,, 0y, and 0., the roll, pitch and yaw, respectively. The

body rate components about the B axes form the vector

w = [wye wy wz]T (2.2

Using the above definitions and assuming a (2-3-1) rotation sequence of the B frame from its

original alignment with O, one obtains the equation for the attitude kinematics

o:p Wy
[ 0, — wo J = [Ap) [ Wy } (2.3)
0, w;
1 Cos 0, — Cos#,Cosf, snb,snd,
A = @) Cosd, —sné, (2.9)
cosh| ) snorcoso, Cosf,cos0, g

The three attitude angles are concatenated in the 3-tuple

o=[0.0, 0]" (2.9)
Let 7 denote the inertia tensor
]1] ]1‘2 ]13
] = ]12 ]22 ]23 (26)
Ly Iz 133

Assuming that the B axes are aso the principle axes of the structure, then the off-diagonal
terms in (2.6) vanish, To distinguish from the inertia tensor, the symbol 7 will represent the
i dentit y matrix. Final] y, given any t hree-vector v = [vy V2 1;3]7', the notation © will be used

to denote the cross product operator

0 —U3 V2
D= | wvs 0 v (2.7)
~V2 (2] 0
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2.2 Rigid Spacecraft Dynamics

The motion of a rigid body is governed by the Euler equations

H4ol=" (2.8)

where 11 is the angular momentum vector and 7' is the total cxternal torque. Assuming that
the control is effected by utilizing a momentum exchange device, €.g. control moment gyro
(CMG), H takes the form

H=1w+h (2.9)
with

i), = —ohtu (210)
where I is the angular momentum of the CMG and uis the control input. Upon substitution
of (2.9) and (2.10) into (2.8) yields

Io+olw=-u 47 (2.12)

2.3 Linearized Attitude Dynamics

Ior control design purposes, (2,11) may be linearized by expanding to the first order about
the constant orbital vector Q2 to obtain
0

Jo = —QIQ — —dlw,  (w=Q)—u+T
[(')w Llo-o
= W+ G0 —u+T (212)
where
T =WQ+Go+17, (213)

The matrix W in (2.12) and (2.13) is given by

I3 21,3 I3z — I
W = wo '-—]23 0 ]12 (214)
I —1nw 26, —ls




and the quantities Go and G by

—21y3 Iz — Iy P 0
Go = w?) 3]]3 y G] = 3(4)?) ]]2 ]33 — ]11 0 (215)
"‘]]2 '-]]3 ’“]23 0
The aerodynamic force 75 has the form
,j‘a =gt q sin wot + q2 sin 2WOi (216)

The attitude kinematics may now be utilized to eliminate w from (2.1 2). Assuming small

angles (2.3) yields

0=MW4w-0 ad =00+
Then substituting into (2. 12) one obtains the linearized description of the attitude dynamics,

- (IQ0+WY0+ (W —G)0=—u+T (2.17)

With similar arguments, it can be shown that the CMG angular momentum may be approx-

imately represented by the linear equation
h=-0h+u (2.18)

The simplified form of (2.17) will be used in Section 3 to derive the attitude control law.

3 Model Reference Attitude Control

The attitude dynamics can be written in the following second-order form,
MO+ DO+ K0 = Byu, + 1'ad (3.1)

Equation (3.1) follows from (2.17) with M =-Z,7 =14d,1'3 = [WQ 4 GO + 9ola1lg2),
D=-(I0+ W), K=WQ - Gy, B, =1 and u, = u. The bounded disturbance vector d

acting on the spacecraft can be considered solution of the differential equation

d = Agd (3.2)




where all the eigenvalues of the matrix Aq arc distinct and lic on the jw axis. Accordingly

(sec Lemma A2), there is a P, = P]’ >0 such that,
PiAg+ ATPy = —Qa =0 (3.3)
It is convenient to put the attitude dynamics (3.1) into state-space form as follows,

0] _ 0 1 0], 0 ]u
[ﬁ = -M71YK —M71D 0 M1, | P

]
+ [ ]\M’ll‘d] d (3.9

It is noted that this system has the following genera] form,

&= Ay, + Byu, + 1I'd (3.5

where,
[z a2 4]
Bp=[,§’pz]; 1‘:[192] (37)

By comparison with (3.4) the components of model (3.5) are spccified as, xp1= 0, Tp2 =
0,Apy = — M'A", Ay = =MD, By = M B3, I'2=M7'1°4. Define a reference model
of the form,

T = Ay + By, (3.8)

where,

0 1 0
Am—[ N A] Bm_[ o 39

The reference model can be chosen by the designer to be any stable model of the form

(3. 9),(3.9). Hence, there exists Q = Q7 >0 and I’ = PT >0 such that

PA, + ATP = Q (3.10)




3.1 Non-Adaptive Control

Inthis section, a model reference attitude control law will be designed of the following form,
up = Kz, 4 1°u,, + JOd (3.11)

where K°, H°, and Jo are matrix gains which remain to be chosen. Define a state error vector
as,

¢ =y — T (3.12)

The dynamics of e can be computed as,
¢ = ApZm+ Bpu, — Ay, — Byu, — 1'd
= Amc+ (An — A, — B, K%)a,
+( B ™ Byl )t — (BpJ° + 1N)d (3.13)

The dynamics of ¢ arc simplified by choosing the gains as to the following Modcl Reference

A tlitude Control Law:

K = [K¢ KS]

](]o = ]3;2] (Am] - Ap])

](; = ]fp—; (Amg - Apz) (314)
He = B3 B

3* = BT,

in which case the error equation (3.13) becomes,
¢ = Anc (3.15)

Clearly, using the attitude controller (3,1 1 ),(3.14) the error between =z,andz,, dies out

exponentially according to the dynamics of the reference model An,.

Remark: If knowledge of M, K, D) is available, the model reference attitude control law
can be used for gain scheduling. Since these quantities appear explicitly in the design, i.e.,
substituting expressions from the second-order model (3.1 ) gives K;=MA,,+ K; K9=
MA,.0; H° = MB,,; Jo = —Ta.




3.2 Adaptive Control

The nonadaptive attitude control law can be writien in vectorized form as,

up = ©° (3.16)
where,

0° = [K? K 1I° J°) (3.17)

ro= foga,u, d') (3.18)

Suppose that the gain matrix ©° in the control (3.16) is not known, and is replaced by an

estimate © to give the approximate control,
{, = Or (3.19)
where,
O = (K, K, 1T J) (3.20)
In this case, the error dynamics in (3.15) become,
¢ = Apc+ B,or (3.21)

where,
P=0°-0 (3.22

The following partitions will be useful,

¢

f

[d’] P, O, 4)4] (323)
ro= [} o] el T (3.24)
where comparison with (3.18) gives, = Tp1; 1,= Tp2; r,=Uy,; ,=d and &, =
Ke — Ky; @2 = K3 — Ko; @, = 1o — 11;@4=Jo — J. The partition (3.23-3.24) also leads
to the identity,
4
Or=3%" (3.25)
1=1




A general resull for stable tuning of the adaptive attitude controller (3.19) is given next.

Theorem: Consider the spacecraft dynamics (3.5) with disturbance model (3.2), reference
model (3.8) and tunable attitude control law (3.19). lLct the parameters in the attitude
controller, be tuned according to the adaptive law,
b= NS Perls i=1,2,3,4 (3.26)
where S =[0|Z}, and A arc any matrices such that

BaA7! = (BeA7) >04 = 1,2,3,4 (3.27)
(eg., Ai=X;-1,2A:> ). Then, the error ¢ = ¥ —x, in (3.21 ) approaches zero asymptotically,
and the quantities z,, ¢ (¢), JT(¢) and J() remain bounded.

Proof: Consider the Lyapunov function candidate,

4
V=cPc+ 7'r{§: q)?‘]fpzA;‘q),} 4 d" Pyd (3.28)
i=1

Differentiating along the system trajectories gives, -
4
V = Pé+TPe+ 7»{}: O B AT @y 4+ ST B oA q),.}
1==1
+d" Pyd + d” Pyd (3.29)
= —¢'Qec+ 27‘T<I)T]$’Z'Pc 4

4 . )
27'r{2 q»?‘]s,,gA;lq),-} — d"Qad (3.30)

=1

4
= —c"Qe+2 Z 7'?‘(]’,-7']32‘]’6

i=]

4 3 )
+2Tr{§: q)?‘y,,z/\;lq»,-} —d"Qud (3.31)

1=1]
) 4 il v il v .
= —TQec+ 27'r{ S o7 (B Per? + Bng;lcb,-)}
i=1
—d7Qqd (3.32)

10




or

. 1 4 1 N 1 . v
V=—c"QcH 27'r{ S olBL(SPer] + A;’d),-)} —d"Qqd (3.33)
1=1

Here, (3.30) follows from (3.29) by using (3.3), (3.10), (3,27) and properties of thetrace;
equation (3.31 ) follows by identity (3.25); equation (3.32) follows by rearranging and using
properties of the trace; and (3.33) follows using the definition of S, Then considering (3.3),
and substituting adaptive law (3.26) into (3.33) yiclds,

V=-c"Qc<0 (3.34)

This implies that V and, conscquently, the quantities ¢, ®, d, z,,r are bounded, Takingan

additional derivative of V gives,
V= -27Qé = —2"Q(Ame + 13,9r) (3.35)
Hence, v is bounded which implies that Vs uniformly continuous. Since,
/0 “Vdi=V(e0) - V(0) < oo (3.36)
it follows from Barabalat’s lemma [5] that V — O and hence ¢ — O as desired. =

The adaptive law (3.26) indicates that the feedback gains in the attitude control loop are
tuned using the relations:
Ky = Al SPexly
K, = A2SPea],
I = AsSPed,
J = ASPed
The control system developed in this section is represented by the block diagram of Figure 2.

(3.37)

3.3 Discussion

The model reference adaptive controller presented in the preceding section is motivated by

an approach for robotic manipulators put forth by lLim and Eslami{6], and has intersection

11




with other standard full-state S1'11-type adaptive designs found, for example, in Landau [7],

Astrom and Wittenmark [8], as well as more recent works of Slotine and Li [9], Bayard
and Wen [1 O], and Wen and Kreutz [1 1]. However, the basic approach of Lim and Eslami
has been modified for application to attitude control, including (with the help of lLemma
A?2) the addition of adaptive filters to reject external disturbance torques acting on the
orbiting spacecraft. This approach to adaptive disturbance rejection is similar in spirit to
standard methods used in the adaptive filtering literature for noise canceling (cf., Widrow and
Stearns [12]). However, adaptive filtering methods arc intended for feedforward (open-loop)
operation, where there is no stability issue. In contrast, the adaptation of the disturbance
filters in the present study is specifically designed to work in concert with the adaptive
feedback loop to reject disturbances while ensuring stability of the overall closed-loop system.

4 Application to Space Station

The result of Section 3 is demonstrated via simulation using the dynamic model of the SSF.
The ‘Phase1’ configuration []] shown in Figure 2 consists of the fully assembled space station
and a massive mobile payload. Payload motion over the seven bay distance eflects large
moment of inertia changes and center of mass relocation, thus, becoming a major contributor
to parameter uncertainty and the cause of instability to conventional controllers. In this
particular SSF configuration, J22< I33< Is3 so that the open loop attitude dynamics are
inherently unstable. Under these operational conditions, adaptive attitude stabilization and

control become highly desirable.

The equations of motion discussed in Section 2 hold in this case with some modification to
reflect the two-body dynamics occurring with the introduction of the payload. The modified

equations are briefly discussed in the following.

12




4.1 Space Station/Mobile Payload Dynamics

Let the B reference frame be fixed on the main body with origin Og at its center of mass (CM).
Then at any instant ¢, the position of the moving payload CM relative to Og, is spccified by
the vector s(1) = [s1(1)s2(1) s3(2)]7. Consequently the effective moment of inertia becomes
time dependent and is given by

I1() = T — B3(1)3(2) (4.1)

where ] = I, + 1. Here, 1, and 1, are the inertia tensors of the space station and payload, re-
spectively. IFurthermore, with m, and m,, masses of the main body ant] payload, respectively,

B is defined by

ms M,

B = (4.2
ms + my
The angular momentum for the two-body system is
H=(-p38)w+p3s+h (4.3)
The equation of motion is then obtained by substituting (4,3) into (2.8)
o+ olw+ f(w,s,8,8) = —u+T (4.9
when-c / is givenin (4.1) and [ is defined as,
f(w,s,8,8) = —B(85 + 88)w + W55 + 58 (4.5)

Thus, the attitude of the space station is completely characterized by (4.4) and (2.3).

4.2 Simulation Results

The adaptive attitude control law (3.26) with the gains implemented according to (3.37) is
used to control the of the SSF with its dynamics discussed in the preceding section. The

parameter values used in the simulation are summarized in the following table:
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‘I"'able 1: SSF/Pa load Simulation Parameters

Parameter Space Station Payload
Mass (kg) 136080 13608
Inertias (kg-m?)

I 3.7096c+07 | 1.4313c+405
Iy, 7.9681c+06 | 1.9182¢405
Is3 4.3212¢+407 | 1.43130--05
1o -2.8774¢+05 0.0
I -1.1805¢+4-05 0.0

The parameter vectors ¢; in the aerodynamic disturbance (2.16) have the values given in
g able 2,

Table 2: Aerodynamic. Paranletcrs(N-nl)
9o a1 92
1.3558¢+00 | 1.3558¢4-00 6.7791¢c-01
5.4233¢+400 | 2.7116¢+00 6.7791e-01
1.3558¢+00 | 1.3558¢+00 6.7791c-01 |

‘I"he orbital rate for the assumed circular orbit is constant, wo = 0.0011 rad/s. The simulation

results shown here represent two possible operational scenarios.

Case I: The payload does not maneuver, and remains near the CM of the main body. The
commanded attitude is 0, = [0 — 13,5 0} where the three angles are in degrees. The roll,
pitch and yaw responses arc shown in Figures 3-5. The broken lines indicate the trajectories
generated by the reference model, Note that the bandwidth of the reference model essentially
becomes the effective bandwidth of the nonlinear closed-loop attitude control system. Since
the attitude control problem considers only the rigid body dynamics of the space station,

reference bandwidth for all three axes is set at 0.00234 rad/s, i.e., approximate] y one decade
below the frequency of the first flexible mode. This low bandwidth assures that there is no

interaction between the flexible and attitude dynamics of the spacecraft. Figure 6 shows
the angular momentum about the pitch axis. Since the pitch motion converges fast to the
commanded TEA, h reaches a non zero average value with the absence of a momentum

management loop. When this loop is closed, the steady state momentum will oscillate about

14




zero. The pitch control torque appearsin Figure 7.

Case H: The 13,608 kg (30,000 Ib) payload travels along the y-axis to a distance of 35
meters, approximately, the length of seven space station bays. The payload motion follows the
position profile of Iigure 8. Despite the large mass relocation, resulting in moment of inertia
changes of, approximately, 30% (Figure 9), the adaptive controller maintains stable attitude
control and drives the spacecraft to the commanded orientation. Time response of the three
attitude angles is shown in Figures 10-12. Representative gain adaptation trajectories are
shown in Figures 13-16. It is noted that, in all cases, the torque demand and angular
momentum accumulation arc well below the bascline CMG requirement for SS{ of J 50 Ib-{t

and 20,000 1b-ft-s, respectively.

5 Summary and Conclusions

An approach to attitude control was introduced based on a direct model reference adaptive
control law. Since the physical parameters appear explicitly, the control law can bc used
either for gain scheduling or for adaptive control, It was shown that the model reference
controller can bc tuned using an adaptation law derived from lLyapunov’s direct method.
This ledto a globally stable adaptive controller for the attitude control problem.lmportant
features of the approach include stability with respect to arbitrary inertia] configurations,
and adaptive disturbance rejection filters which tune out periodic torques with frequencics

at multiples of the orbital rate.

Simulation results show excellent stability and robustness performance when the spacecraft,
in this casc the space station, is subjected to significant mass property chages. in Case Il of
Section 4.2, the adaptive controller maintained stable performance under maneuvering of a

massive (30,000 Ib) payload from the CM of the main body to a distance of 7 bays (35 m).

A problem closely related to attitude control, is momentum management. lere, onc is con-
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cerned with the amount of momentum accumulated so that the actuators (CMG’s, reaction
wheels, ete. ) do not saturate. Momentum in the present adaptive scheme can be managed by
commanding an indirectly computed estimate of the TIA. A direct adaptive approach to the
momentum management problem is presently under study which will provide an outer loop
for commanding the reference model input. Other issues such as robustness of the adaptive

design to flexible body dynamics, nonidcalitics, €tc., remain to be investigated.
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Appendix

The following arc presented in support of the arguments leading to the Lyapunov equation

(3.3) and its utilization in the stability proof of Section 3.2,
Theorem Al: If AeR™*™ has distinct cigenvalucs, then it is similar to a diagonal matrix.

Proof: Sce [13] n

Lemma Al: Let A.€ R**?be in the companion form

0 1
. (A)
with distinct eigenvalues {\;, A2} Thenthe similarity transformation

A=RTAR (A.2)

with I the nonsingular Vandermondc matrix,

R= [;1 A12 ] | (A.3)




diagonalizes A s0 that A = diag{\;, A2}.
Proof: Follows by substitution of (A.]) and (A.3) into (A.2). n

Lemma A2: Let A€ R**"be a genera] matrix with distinct eigenvalues al on the jw axis,

Then there cxists a P = PT >0, P’ ¢ R™*" such that

PAL AP =—Q=0 (AA)

Proof: Since al cigenvalucs lie on the jw axis,

O, {#jwi};ifn odd ., _ {49 -
MA) = {Hjwi}; if neven ' 10yl (A.5)
where
= % if n even
"T e ifa odd (A.6)

Taking the case of n odd to be the most genera], assume that AC is in the block 2 x 2

companion form

0O 0 0 . . 0 0 A
o o 1~ 0 O
0 —w?2 o ... 0
Ac=| . L (A7)
0O 0 o0 . 01
0 0 0 —w? 0
and let
1 0 0 0 0
010 o O
00 wi? ... 0 0
P = : (A.8)
00 O 10
0 0 0. 0 w?
Itis easy thento verify that
PA A+ ATP, =0 (A.9)
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where P>, > 0. An identical argument can be made if n is even by eliminating the first row
and column from each of A. and FP,.To further generalize this result let A be any matrix
with distinct eigenvalues A(A)as in (A ,5) and n odd. According to Theorem A 1 there exists

a nonsingular matrix 7', such that
T-1AT = A (AJO)

Furthermore, byl.emma A 1 a block 2 x 2 Vandcrmondc matrix R can be constructed as

1 d O . 0 0 ]
0111 1~ 0 0
, 0 jwy —jwy -+ o
R=| .70 " . .. (A1])
O o0cO0 ... 11
(0 00 0 - . jw —jws |
so that
R7YAR=A (A.12)
Equating the left-hand side of (A.10) and (A.12) and solving for A yields
A= LA (A.13)
where I = RT-'. Then from (A.9) and (A.13) it follows that
P.A. + AP, = O
= LTP.LL AL+ LA ) 1Pl =0
= PA + ATP =
where P’ = LTP.L. n
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Fligure 5: Case 1- Yaw Angle Time Response
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Figure 6: Case I - Pitch Angular Momentum
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Figure 7: Case 1- Pitch Control Torque
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Figure 8: Case Il - Payload Position Profile
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Figure 9: Case 11- Ch ange in Moment of Inertia
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Figure 10: Casc 11 - Roll Angle Time Response
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Figure 11: Case Il - Pitch Angle Time Response
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Figure 12: ascIl - Yaw Angle Time Responsc
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Figure 13: Case 11- Adaptation of X (2,1) and K; (2,2)
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Figure 14: Case 11- Adaptation of K (2,3) and K; (3,2)
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Figure 15: Case 11- Adaptation of J4(1, 1) and Jq(1, 3)
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Figure 16: Case 11 - Adaptation of J4(2,1) and J4(2, 3)
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